Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Phylogeny and structure of the cinnamyl alcohol dehydrogenase gene family in Brachypodium distachyon.

Identifieur interne : 002958 ( Main/Exploration ); précédent : 002957; suivant : 002959

Phylogeny and structure of the cinnamyl alcohol dehydrogenase gene family in Brachypodium distachyon.

Auteurs : Christian Bukh [Danemark] ; Pia Haugaard Nord-Larsen ; S Ren K. Rasmussen

Source :

RBID : pubmed:23028019

Descripteurs français

English descriptors

Abstract

Cinnamyl alcohol dehydrogenase (CAD) catalyses the final step of the monolignol biosynthesis, the conversion of cinnamyl aldehydes to alcohols, using NADPH as a cofactor. Seven members of the CAD gene family were identified in the genome of Brachypodium distachyon and five of these were isolated and cloned from genomic DNA. Semi-quantitative reverse-transcription PCR revealed differential expression of the cloned genes, with BdCAD5 being expressed in all tissues and highest in root and stem while BdCAD3 was only expressed in stem and spikes. A phylogenetic analysis of CAD-like proteins placed BdCAD5 on the same branch as bona fide CAD proteins from maize (ZmCAD2), rice (OsCAD2), sorghum (SbCAD2) and Arabidopsis (AtCAD4, 5). The predicted three-dimensional structures of both BdCAD3 and BdCAD5 resemble that of AtCAD5. However, the amino-acid residues in the substrate-binding domains of BdCAD3 and BdCAD5 are distributed symmetrically and BdCAD3 is similar to that of poplar sinapyl alcohol dehydrogenase (PotSAD). BdCAD3 and BdCAD5 expressed and purified from Escherichia coli both showed a temperature optimum of about 50 °C and molar weight of 49 kDa. The optimal pH for the reduction of coniferyl aldehyde were pH 5.2 and 6.2 and the pH for the oxidation of coniferyl alcohol were pH 8 and 9.5, for BdCAD3 and BdCAD5 respectively. Kinetic parameters for conversion of coniferyl aldehyde and coniferyl alcohol showed that BdCAD5 was clearly the most efficient enzyme of the two. These data suggest that BdCAD5 is the main CAD enzyme for lignin biosynthesis and that BdCAD3 has a different role in Brachypodium. All CAD enzymes are cytosolic except for BdCAD4, which has a putative chloroplast signal peptide adding to the diversity of CAD functions.

DOI: 10.1093/jxb/ers275
PubMed: 23028019
PubMed Central: PMC3481213


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Phylogeny and structure of the cinnamyl alcohol dehydrogenase gene family in Brachypodium distachyon.</title>
<author>
<name sortKey="Bukh, Christian" sort="Bukh, Christian" uniqKey="Bukh C" first="Christian" last="Bukh">Christian Bukh</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Denmark.</nlm:affiliation>
<country xml:lang="fr">Danemark</country>
<wicri:regionArea>Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C</wicri:regionArea>
<wicri:noRegion>DK-1871 Frederiksberg C</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Nord Larsen, Pia Haugaard" sort="Nord Larsen, Pia Haugaard" uniqKey="Nord Larsen P" first="Pia Haugaard" last="Nord-Larsen">Pia Haugaard Nord-Larsen</name>
</author>
<author>
<name sortKey="Rasmussen, S Ren K" sort="Rasmussen, S Ren K" uniqKey="Rasmussen S" first="S Ren K" last="Rasmussen">S Ren K. Rasmussen</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:23028019</idno>
<idno type="pmid">23028019</idno>
<idno type="doi">10.1093/jxb/ers275</idno>
<idno type="pmc">PMC3481213</idno>
<idno type="wicri:Area/Main/Corpus">002867</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002867</idno>
<idno type="wicri:Area/Main/Curation">002867</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002867</idno>
<idno type="wicri:Area/Main/Exploration">002867</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Phylogeny and structure of the cinnamyl alcohol dehydrogenase gene family in Brachypodium distachyon.</title>
<author>
<name sortKey="Bukh, Christian" sort="Bukh, Christian" uniqKey="Bukh C" first="Christian" last="Bukh">Christian Bukh</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Denmark.</nlm:affiliation>
<country xml:lang="fr">Danemark</country>
<wicri:regionArea>Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C</wicri:regionArea>
<wicri:noRegion>DK-1871 Frederiksberg C</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Nord Larsen, Pia Haugaard" sort="Nord Larsen, Pia Haugaard" uniqKey="Nord Larsen P" first="Pia Haugaard" last="Nord-Larsen">Pia Haugaard Nord-Larsen</name>
</author>
<author>
<name sortKey="Rasmussen, S Ren K" sort="Rasmussen, S Ren K" uniqKey="Rasmussen S" first="S Ren K" last="Rasmussen">S Ren K. Rasmussen</name>
</author>
</analytic>
<series>
<title level="j">Journal of experimental botany</title>
<idno type="eISSN">1460-2431</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Alcohol Oxidoreductases (chemistry)</term>
<term>Alcohol Oxidoreductases (genetics)</term>
<term>Alcohol Oxidoreductases (isolation & purification)</term>
<term>Alcohol Oxidoreductases (metabolism)</term>
<term>Amino Acid Sequence (MeSH)</term>
<term>Biomass (MeSH)</term>
<term>Brachypodium (enzymology)</term>
<term>Brachypodium (genetics)</term>
<term>Brachypodium (metabolism)</term>
<term>Catalytic Domain (MeSH)</term>
<term>Chloroplasts (metabolism)</term>
<term>Gene Expression Regulation, Enzymologic (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Genome, Plant (genetics)</term>
<term>Hydrogen-Ion Concentration (MeSH)</term>
<term>Kinetics (MeSH)</term>
<term>Lignin (metabolism)</term>
<term>Models, Molecular (MeSH)</term>
<term>Molecular Weight (MeSH)</term>
<term>Multigene Family (MeSH)</term>
<term>Peptide Mapping (MeSH)</term>
<term>Phylogeny (MeSH)</term>
<term>Plant Leaves (enzymology)</term>
<term>Plant Leaves (genetics)</term>
<term>Plant Leaves (metabolism)</term>
<term>Plant Roots (enzymology)</term>
<term>Plant Roots (genetics)</term>
<term>Plant Roots (metabolism)</term>
<term>Plant Stems (enzymology)</term>
<term>Plant Stems (genetics)</term>
<term>Plant Stems (metabolism)</term>
<term>Protein Sorting Signals (MeSH)</term>
<term>RNA, Plant (genetics)</term>
<term>Recombinant Proteins (MeSH)</term>
<term>Sequence Alignment (MeSH)</term>
<term>Temperature (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN des plantes (génétique)</term>
<term>Alcohol oxidoreductases (composition chimique)</term>
<term>Alcohol oxidoreductases (génétique)</term>
<term>Alcohol oxidoreductases (isolement et purification)</term>
<term>Alcohol oxidoreductases (métabolisme)</term>
<term>Alignement de séquences (MeSH)</term>
<term>Biomasse (MeSH)</term>
<term>Brachypodium (enzymologie)</term>
<term>Brachypodium (génétique)</term>
<term>Brachypodium (métabolisme)</term>
<term>Cartographie peptidique (MeSH)</term>
<term>Chloroplastes (métabolisme)</term>
<term>Cinétique (MeSH)</term>
<term>Concentration en ions d'hydrogène (MeSH)</term>
<term>Domaine catalytique (MeSH)</term>
<term>Famille multigénique (MeSH)</term>
<term>Feuilles de plante (enzymologie)</term>
<term>Feuilles de plante (génétique)</term>
<term>Feuilles de plante (métabolisme)</term>
<term>Génome végétal (génétique)</term>
<term>Lignine (métabolisme)</term>
<term>Masse moléculaire (MeSH)</term>
<term>Modèles moléculaires (MeSH)</term>
<term>Phylogenèse (MeSH)</term>
<term>Protéines recombinantes (MeSH)</term>
<term>Racines de plante (enzymologie)</term>
<term>Racines de plante (génétique)</term>
<term>Racines de plante (métabolisme)</term>
<term>Régulation de l'expression des gènes codant pour des enzymes (MeSH)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Signaux de triage des protéines (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Température (MeSH)</term>
<term>Tiges de plante (enzymologie)</term>
<term>Tiges de plante (génétique)</term>
<term>Tiges de plante (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Alcohol Oxidoreductases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Alcohol Oxidoreductases</term>
<term>RNA, Plant</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="isolation & purification" xml:lang="en">
<term>Alcohol Oxidoreductases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Alcohol Oxidoreductases</term>
<term>Lignin</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Alcohol oxidoreductases</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Brachypodium</term>
<term>Feuilles de plante</term>
<term>Racines de plante</term>
<term>Tiges de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Brachypodium</term>
<term>Plant Leaves</term>
<term>Plant Roots</term>
<term>Plant Stems</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Brachypodium</term>
<term>Genome, Plant</term>
<term>Plant Leaves</term>
<term>Plant Roots</term>
<term>Plant Stems</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ARN des plantes</term>
<term>Alcohol oxidoreductases</term>
<term>Brachypodium</term>
<term>Feuilles de plante</term>
<term>Génome végétal</term>
<term>Racines de plante</term>
<term>Tiges de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="isolement et purification" xml:lang="fr">
<term>Alcohol oxidoreductases</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Brachypodium</term>
<term>Chloroplasts</term>
<term>Plant Leaves</term>
<term>Plant Roots</term>
<term>Plant Stems</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Alcohol oxidoreductases</term>
<term>Brachypodium</term>
<term>Chloroplastes</term>
<term>Feuilles de plante</term>
<term>Lignine</term>
<term>Racines de plante</term>
<term>Tiges de plante</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Biomass</term>
<term>Catalytic Domain</term>
<term>Gene Expression Regulation, Enzymologic</term>
<term>Gene Expression Regulation, Plant</term>
<term>Hydrogen-Ion Concentration</term>
<term>Kinetics</term>
<term>Models, Molecular</term>
<term>Molecular Weight</term>
<term>Multigene Family</term>
<term>Peptide Mapping</term>
<term>Phylogeny</term>
<term>Protein Sorting Signals</term>
<term>Recombinant Proteins</term>
<term>Sequence Alignment</term>
<term>Temperature</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Alignement de séquences</term>
<term>Biomasse</term>
<term>Cartographie peptidique</term>
<term>Cinétique</term>
<term>Concentration en ions d'hydrogène</term>
<term>Domaine catalytique</term>
<term>Famille multigénique</term>
<term>Masse moléculaire</term>
<term>Modèles moléculaires</term>
<term>Phylogenèse</term>
<term>Protéines recombinantes</term>
<term>Régulation de l'expression des gènes codant pour des enzymes</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Signaux de triage des protéines</term>
<term>Séquence d'acides aminés</term>
<term>Température</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Cinnamyl alcohol dehydrogenase (CAD) catalyses the final step of the monolignol biosynthesis, the conversion of cinnamyl aldehydes to alcohols, using NADPH as a cofactor. Seven members of the CAD gene family were identified in the genome of Brachypodium distachyon and five of these were isolated and cloned from genomic DNA. Semi-quantitative reverse-transcription PCR revealed differential expression of the cloned genes, with BdCAD5 being expressed in all tissues and highest in root and stem while BdCAD3 was only expressed in stem and spikes. A phylogenetic analysis of CAD-like proteins placed BdCAD5 on the same branch as bona fide CAD proteins from maize (ZmCAD2), rice (OsCAD2), sorghum (SbCAD2) and Arabidopsis (AtCAD4, 5). The predicted three-dimensional structures of both BdCAD3 and BdCAD5 resemble that of AtCAD5. However, the amino-acid residues in the substrate-binding domains of BdCAD3 and BdCAD5 are distributed symmetrically and BdCAD3 is similar to that of poplar sinapyl alcohol dehydrogenase (PotSAD). BdCAD3 and BdCAD5 expressed and purified from Escherichia coli both showed a temperature optimum of about 50 °C and molar weight of 49 kDa. The optimal pH for the reduction of coniferyl aldehyde were pH 5.2 and 6.2 and the pH for the oxidation of coniferyl alcohol were pH 8 and 9.5, for BdCAD3 and BdCAD5 respectively. Kinetic parameters for conversion of coniferyl aldehyde and coniferyl alcohol showed that BdCAD5 was clearly the most efficient enzyme of the two. These data suggest that BdCAD5 is the main CAD enzyme for lignin biosynthesis and that BdCAD3 has a different role in Brachypodium. All CAD enzymes are cytosolic except for BdCAD4, which has a putative chloroplast signal peptide adding to the diversity of CAD functions.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23028019</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>04</Month>
<Day>08</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1460-2431</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>63</Volume>
<Issue>17</Issue>
<PubDate>
<Year>2012</Year>
<Month>Oct</Month>
</PubDate>
</JournalIssue>
<Title>Journal of experimental botany</Title>
<ISOAbbreviation>J Exp Bot</ISOAbbreviation>
</Journal>
<ArticleTitle>Phylogeny and structure of the cinnamyl alcohol dehydrogenase gene family in Brachypodium distachyon.</ArticleTitle>
<Pagination>
<MedlinePgn>6223-36</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/jxb/ers275</ELocationID>
<Abstract>
<AbstractText>Cinnamyl alcohol dehydrogenase (CAD) catalyses the final step of the monolignol biosynthesis, the conversion of cinnamyl aldehydes to alcohols, using NADPH as a cofactor. Seven members of the CAD gene family were identified in the genome of Brachypodium distachyon and five of these were isolated and cloned from genomic DNA. Semi-quantitative reverse-transcription PCR revealed differential expression of the cloned genes, with BdCAD5 being expressed in all tissues and highest in root and stem while BdCAD3 was only expressed in stem and spikes. A phylogenetic analysis of CAD-like proteins placed BdCAD5 on the same branch as bona fide CAD proteins from maize (ZmCAD2), rice (OsCAD2), sorghum (SbCAD2) and Arabidopsis (AtCAD4, 5). The predicted three-dimensional structures of both BdCAD3 and BdCAD5 resemble that of AtCAD5. However, the amino-acid residues in the substrate-binding domains of BdCAD3 and BdCAD5 are distributed symmetrically and BdCAD3 is similar to that of poplar sinapyl alcohol dehydrogenase (PotSAD). BdCAD3 and BdCAD5 expressed and purified from Escherichia coli both showed a temperature optimum of about 50 °C and molar weight of 49 kDa. The optimal pH for the reduction of coniferyl aldehyde were pH 5.2 and 6.2 and the pH for the oxidation of coniferyl alcohol were pH 8 and 9.5, for BdCAD3 and BdCAD5 respectively. Kinetic parameters for conversion of coniferyl aldehyde and coniferyl alcohol showed that BdCAD5 was clearly the most efficient enzyme of the two. These data suggest that BdCAD5 is the main CAD enzyme for lignin biosynthesis and that BdCAD3 has a different role in Brachypodium. All CAD enzymes are cytosolic except for BdCAD4, which has a putative chloroplast signal peptide adding to the diversity of CAD functions.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Bukh</LastName>
<ForeName>Christian</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Denmark.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Nord-Larsen</LastName>
<ForeName>Pia Haugaard</ForeName>
<Initials>PH</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rasmussen</LastName>
<ForeName>Søren K</ForeName>
<Initials>SK</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>10</Month>
<Day>01</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>J Exp Bot</MedlineTA>
<NlmUniqueID>9882906</NlmUniqueID>
<ISSNLinking>0022-0957</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D021382">Protein Sorting Signals</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018749">RNA, Plant</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011994">Recombinant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9005-53-2</RegistryNumber>
<NameOfSubstance UI="D008031">Lignin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.1.-</RegistryNumber>
<NameOfSubstance UI="D000429">Alcohol Oxidoreductases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.1.1.195</RegistryNumber>
<NameOfSubstance UI="C018656">cinnamyl alcohol dehydrogenase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000429" MajorTopicYN="N">Alcohol Oxidoreductases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018533" MajorTopicYN="N">Biomass</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058431" MajorTopicYN="N">Brachypodium</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020134" MajorTopicYN="N">Catalytic Domain</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002736" MajorTopicYN="N">Chloroplasts</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015971" MajorTopicYN="N">Gene Expression Regulation, Enzymologic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018745" MajorTopicYN="N">Genome, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006863" MajorTopicYN="N">Hydrogen-Ion Concentration</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007700" MajorTopicYN="N">Kinetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008031" MajorTopicYN="N">Lignin</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008970" MajorTopicYN="N">Molecular Weight</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005810" MajorTopicYN="N">Multigene Family</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010449" MajorTopicYN="N">Peptide Mapping</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018547" MajorTopicYN="N">Plant Stems</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D021382" MajorTopicYN="N">Protein Sorting Signals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018749" MajorTopicYN="N">RNA, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011994" MajorTopicYN="N">Recombinant Proteins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016415" MajorTopicYN="N">Sequence Alignment</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013696" MajorTopicYN="N">Temperature</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>10</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>10</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>4</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23028019</ArticleId>
<ArticleId IdType="pii">ers275</ArticleId>
<ArticleId IdType="doi">10.1093/jxb/ers275</ArticleId>
<ArticleId IdType="pmc">PMC3481213</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Mol Biol. 2009 Apr;69(6):685-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19116760</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2001 Aug;57(7):1069-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11430980</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2004 Feb;65(3):313-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14751302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1975 Nov 1;59(1):9-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1250</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 1995 Jun 10;247(5):537-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7603432</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1992 Nov 1;298(2):612-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1416989</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Jun;132(2):848-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12805615</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2007 Jun;226(1):235-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17226026</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 1994 Nov;37(4):941-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7765663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2008 Jun;11(3):278-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18434238</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2002 Jan 1;361(Pt 1):163-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11742541</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>C R Biol. 2004 Sep-Oct;327(9-10):847-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15587076</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2003 Feb 26;51(5):1313-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12590475</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2005 Mar;272(5):1255-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15720399</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1993 Jan;21(2):385-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8425063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Dec 6;277(49):47412-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12351655</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2007;2(4):953-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17446895</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2010;10:100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20509918</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 May;17(5):1598-611</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15829607</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2004 Jul 16;340(4):783-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15223320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2003;54:519-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14503002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Electrophoresis. 2004 May;25(9):1327-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15174055</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Evol. 2010 Sep;71(3):202-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20721545</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W465-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18424797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1992 Mar 5;356(6364):83-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1538787</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2005 Nov;59(5):753-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16270228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1996 Jan;110(1):3-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12226169</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1974 Jul 19;250(463):194-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4368490</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochimie. 2010 Aug;92(8):985-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20420880</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2010 Jun;61(10):2735-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20400532</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2009 May;28(5):787-800</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19288108</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2005 Mar;220(5):678-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15452707</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Org Biomol Chem. 2006 May 7;4(9):1687-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16633561</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Jul;17(7):2059-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15937231</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1998 Jun;14(5):545-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9675900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1994 Jan;104(1):75-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12232063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(1):e16416</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21298014</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1996 Nov 26;93(24):14199-203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11038530</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Syst Biol. 2006 Aug;55(4):539-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16785212</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 2010;44:337-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20809799</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Feb 10;101(6):1455-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14745009</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2010 Feb 11;463(7282):763-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20148030</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2007 Jul;25(7):759-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17572667</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004;32(5):1792-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15034147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2006;7:439</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17032440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2000 Jun;48(6):2326-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10888545</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1991 Jul 12;253(5016):164-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1853201</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2002 Oct;61(3):221-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12359514</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 May;54(4):569-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18476864</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1998 Mar;36(5):755-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9526508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2001 Nov;28(3):257-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11722769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2001 Jul;13(7):1567-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11449052</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1992 Aug;188(1):48-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24178198</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2009 Feb;181(2):783-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19087955</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1994 Nov 11;22(22):4673-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7984417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Jun;150(2):584-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19363091</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Syst Biol. 2007 Aug;56(4):564-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17654362</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2007 Jul;68(14):1957-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17467016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2009;9:26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19267902</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 1999 Apr;15(4):305-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10320398</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2007 Nov 1;23(21):2947-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17846036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2010 Jul;29(7):779-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20454964</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1993 Dec 5;234(3):779-815</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8254673</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Danemark</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Nord Larsen, Pia Haugaard" sort="Nord Larsen, Pia Haugaard" uniqKey="Nord Larsen P" first="Pia Haugaard" last="Nord-Larsen">Pia Haugaard Nord-Larsen</name>
<name sortKey="Rasmussen, S Ren K" sort="Rasmussen, S Ren K" uniqKey="Rasmussen S" first="S Ren K" last="Rasmussen">S Ren K. Rasmussen</name>
</noCountry>
<country name="Danemark">
<noRegion>
<name sortKey="Bukh, Christian" sort="Bukh, Christian" uniqKey="Bukh C" first="Christian" last="Bukh">Christian Bukh</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002958 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002958 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23028019
   |texte=   Phylogeny and structure of the cinnamyl alcohol dehydrogenase gene family in Brachypodium distachyon.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23028019" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020